Recommendation System for Design Patterns in Software Development:
An DPR Overview

Francis Palma, Hadi Farzin, Yann-Gaé€l Guéhéneuc

Ecole Polytechnique de Montréal
Montréal, Canada

{francis.palma, hadi.farzin, yann-gael.gueheneuc} @polymtl.ca

Abstract—Software maintenance can become monotonous
and expensive due to ignorance and misapplication of appro-
priate design patterns during the early phases of design and
development. To have a good and reusable system, designers
and developers must be aware of large information set and
many quality concerns, e.g., design patterns. Systems with
correct design pattern may ensure easy maintenance and
evolution. However, without assistance, designing and develop-
ment of software systems following certain design patterns is
difficult for engineers. Recommendation systems for software
engineering can assist designers and developers with a wide
range of activities including suggesting design patterns. With
the help of pattern recommenders, designers can come up with
a reusable design. We provide a Design Pattern Recommender
(DPR) process overview for software design to suggest design
patterns, based on a simple Goal-Question-Metric (GQM)
approach. Our prototype provides two-fold solution. In the
primary-level, DPR only proposes one or more design patterns
for a problem context, and in the secondary level, for a
initial set of design, DPR refactors models and suggests design
patterns. Our preliminary evaluation shows that DPR has a
good trade-off between accuracy and procedural complexity,
comparing to other state-of-the-art approaches.

Keywords-Recommendation system; Design pattern; Soft-
ware reuse

I. INTRODUCTION

Each pattern describes a problem that occurs over and
over again in software development domain and then de-
scribes the core of the solution to that problem, in such
a way that we can use this solution many times, without
doing it the same way twice [3]. According to Gamma
et al. [4], the use of design patterns, more precisely, of
recurring design solutions for object-oriented systems, pro-
vides several advantages, from increased reusability and
improved maintainability to comprehensibility of existing
systems. Increasing number of available design patterns
should lead to better quality, by proposing good solutions to
recurring design problems. However, it is difficult to follow
all new patterns during development and to choose the right
patterns when faced with a design problem [7]. A general
definition and description proposed by the organizers of the
ACM International Conference on Recommender Systems
states: “Recommendation systems are software applications
that aim to support users in their decision-making while
interacting with large information spaces”. For helping
designers, a recommendation system can gather and analyze

Naouel Moha
Université du Québec a Montréal
Montréal, Canada
moha.naouel @ugam.ca

information and make decisions. The purpose of our work is
two-fold. Firstly, recommend a design pattern for a specific
problem context (primary-level) and, secondly, recommend
one (or more) design pattern(s) suitable for a system with
initial models already created by the designer (secondary-
level). In this work, we will focus on the prototype of
primary-level recommendation and keep the secondary level
for future work. The remainder of this paper is organized as
follows. Section II presents the literature of some design
pattern recommendation techniques. Section III describes
our approach, and Section IV, the design-prototype of the
system. Section VI presents a preliminary evaluation. The
concluding remarks and future work are discussed in Section
VIIL

II. RELATED WORK

For suggesting design pattern, recommendation is also an
important activity, to minimize designers’ effort and helping
them to have a good set of models with correct patterns.
Thus, recommendation systems can play important role by
recommending design patterns to overcome the information
overload problem by exposing users to the most interesting
items [5]. We discuss few recommendation approaches that
have been proposed in the literature. Guéhéneuc et al. [6]
introduced a simple recommender system, to help users in
choosing among the 23 design patterns from the GoF [4],
and the system was developed by analyzing the textual de-
scriptions of design patterns. But complex design problems
are not manageable, also no user feedback is associated
with this approach, which makes it obsolete. Gomes et
al. [9] proposed an approach that exploits user experience
to suggest suitable patterns using the ReBuilder framework.
ReBuilder adopts a case-based reasoning approach, where
cases represent situations in which a pattern was already
applied in the past in a software design. Here, cases are
described in terms of class diagrams. But the main drawback
of this approach is that such diagrams are not always avail-
able and does not produce relevance score. Kung et al. [8]
proposed a prototype of an expert system for suggesting
design patterns, that is closest to our work. With a wide
range of patterns, narrowing down the selection through
an interactive session (asking questions) with the users,
Expert System for Suggesting Design Patterns (ESSDP) [8]
effectively suggests design patterns. However, reducing the
number of questions is still a challenge and more accuracy
can be achieved. We also try to propose a similar approach

with the same goal, trying to minimize the number of
questions, with a good relevance and accuracy.

III. THE METHODOLOGY

In this section, we describe the methodology for Design
Pattern Recommender (DPR). DPR is a selection type of
expert system and hence we choose to use a ranking based
selection approach for DPR. DPR is aimed to help designers
to find or decide which pattern to use for a particular design
problem. For developing an expert system like DPR consists
of four steps, summarized as follows:

A. Identify the Circumstances in Which Patterns Can be
Applied

Prior to constructing our knowledge base for DPR, we per-
form knowledge acquisition. Knowledge acquisition refers to
the task of gathering the required knowledge and verifying
it. Knowledge refers to in-depth study of the individual
patterns, i.e., their properties, applicabilities, intents, exam-
ples, etc. During this phase, we review and analyze the
literature on object-oriented software design patterns. Others
may interview human experts to obtain knowledge on design
patterns. We select design patterns by Gamma [4]. For
example, From the description of the Adapter pattern [4],
and following the guidelines suggested by Sommerville and
Sawyer [1], we can derive the following set of conditions
referring to some circumstances (in Figure 1, the child nodes
of Adapter node are the intents of Adapter pattern):
C1: Need to convert interface.
C2: Want to solve issue of incompatible interfaces.

B. Refine the Circumstances With Sub-conditions

As a result of Step A, we obtain various trees similar to
Figure 1 for each pattern. Here, we refine each condition into
possible subconditions, i.e., from the intents as conditions
to the applicabilities as sub-conditions for each pattern. In
Figure 1, we can see that adapter pattern had two conditions
C1 and C2 and then again it has three subconditions SCI,
SC2 and SC3.

C. Formulate Questions to Ask Designers

Tree representation of knowledge about patterns obtained
during Step A and B, are the means to derive questions to
ask designers. From the answers to these questions, patterns
receive weights given by designers. Here, we convert each
node from the tree to questions. For example, for Adapter
pattern, the first subcondition becomes ‘Do you want to
create a reusable class?” and the second subcondition ‘Do
you need to use several existing subclasses?’. The result
of this step is a set of questions formulated for each tree
generated from Step B.

D. Formulate GOM Model with the Defined Questions

We build a Goal-Question-Metric (GQM) [2] model for
the interactivity. At top, we place the pattern names as the
goals. In the question levels, we place 2-layered questions,
where first layer represents conditions, followed by the
subconditions. These bottom level questions will be asked
directly to designers. Each of which will be responded with
‘yes’, ‘no’ or ‘do not know’, with a weight, assigned by
the users. All the weights are positive integers between
1 and 9 (except O for ‘do not know’). For example, any
positive response will have impact on current pattern and any

I

Convert interface
1
| | por 23 |
| SC3
Want to create a Want to use
reusable class existing class

Figure 1. Adapter pattern with conditions (pattern-intents) and sub-
conditions (pattern-applicabilities)

Solve issue of
incompatible
__interfaces

i
Need to use several
existing subclasses

e
b

negative response will have impact on all the other patterns.
Figure 2 shows a set of candidate design patterns, when
designer chooses ‘Architectural class’ as the response of the
level-0 question. In this figure, some other patterns are also
presented that are not under ‘Architectural’ pattern class, as
they are related. The calculation of total weight for each
design patterns can formally be defined as in the Equation
(1) below:

Pattern_Nametoweight =
n

vApplicability (Z Weight (Pattern_Namei_Yes_Score)

i=1
+ Z Weight (Pattern_N amej_NO_score>> €Y

7j=1
where,i #j&i>1,j>1
In Equation (1), the Pattern_Namerty weigh: iS a func-
tion that calculates the total weight for a design pattern.
n

E Weight(Pattern_Name; yes_score) 1S @ function that

i=1

calculates the total weight for all the ‘yes’ responses for the
n

current pattern and Z Weight(Pattern_N amej_No_score)
=1

returns the total welght for all the ‘no’ responses, calculated

by the WEIGHT function. We deploy this equation during

interactive session for selecting the design pattern, as shown

in Table L.

IV. PROTOTYPE

In this section, we provides a high-level overview of
DPR system activities and components, resulting from the
methodology described in Section III.

A. The DPR Knowledge Base (KB)

We have a central KB that plays an important role during
the interactive session with the designer. We present an XML
implementation of such a KB in Figure 3 that is a simple
XML-based representation of the pattern specific properties
and their relations with other patterns in the problem context.
From Figure 3, we can see the root node of the XML DOM
is DesignPattern followed by three children DesignPattern-
Typel (2 and 3). Under the DesignPatternTypel, the children
are all the stand-alone patterns, each of which again have
children, i.e., Intents, Applicability and Link. For the Link

=

Convertinterface Solve issue of Operations to perform Define new Extending Flexible altenative Add additional responsibilities
incompatible on the elements operation without functionality to subclassing to an object dynamically
interfaces — changing classes
_____ ey
S _ el P ——\ s
Need to use Want to create 'Wa'r'n.-t; perform [§W: Want to define Want to add responsibilities - Extension by
several existing areusable :}:’;{:‘ ‘OC;J::S operation on ‘polluting’ classes new ops over to individual obj. dynamically m‘;?ggﬂgn;ngh;sm subclassing is
subclasses class ng objects with new ops the structure not affecting other impractical
! 1 J =
Yes / No / Don't know Yes / No / Don't know Yes / No / Don't know ’ Weight | | —=ric

Figure 2.

<?xmlversion="1.0" encoding="UTF-8"?>
<DesignPatternType id = "Architectural" description ="Class architecture related...">
<Patternsname ="Adapter">
<Intentintentl = "Convertinterface" intent2 = "Solve issue of incompatible interfaces">
<Applicability appl = "Need to use several existing subclasses" app2="..."app3 ="...">
<Link Pattern ="Visitor">
<IncominglLink destitem = "Adapter.app3" srcitem = "Visitor.intent1"/>
<IncomingLink destitem = "Adapter.app3" srcitem = "Visitor.intent2"/>
</Link>
<Link Pattern ="Decorator">
<IncominglLink destitem = "Adapter.app3" srcitem = "Decorator.intentl"/>
</Link>
</Applicability>
</Intent>
<Values applvalue = "Yes" app2value = "No" app3value = "Don't Know"/>
<Weights applweight="" app2weight="" app3weight=""/>
</Patterns>
</DesignPatternType>

Figure 3. XML-representation of DPR knowledge-base

node, it has another child node, i.e., IncomingLink. This
node stores information for all the incoming relations to this
pattern putting itself in the destitem and the pattern to which
it is related to in srcitem nodes respectively.

B. DPR Process Model

Figure 4 shows the activity diagram for primary-level
recommendation. According to Figure 4, we first ask users
the top level (level 0) question for filtering the pattern type.
Then, using the GQM-tree, we ask designers the context
specific questions and apply a weighting scheme to valuate
responses. For this questionnaire part, DPR knowledge-base
will be used. At the end, patterns will be ranked according
to the total weight and the pattern with the highest total
will be selected. For secondary-level recommendation, in
Figure 6, we select patterns to apply on a initial set of
models. For the input, we have some initial designs of the
system, in addition with inputs from that of primary-level.
We convert those designs (e.g., UML models) to parsable
XML documents. After parsing those XMLs, we perform
keyword mining within the system for some abstract design
elements, i.e., classes, methods, their relationships, etc.
Finally, a systematic similarity checking will be performed,
e.g., documents matching, for choosing a pattern for that
particular sets of design with some pattern specifications
(i.e., KB). We continue until all the XMLs already are under
certain selected patterns.

C. Process Summary

Figure 5 summarizes the concepts of primary and sec-
ondary pattern recommendation, showing main input param-

In DPR, a simple GQM model to select design pattern by asking questions

Start
Ask user to . Last Used
Primary .
= complete < LT . Design
. . questionnaire
questionnaire Pattern
- . Knowledge Base
No Calculation of wnowiecse XML Database
Weight Classification of Of Design Pattern
v y o sigr 1
& Pattern by Weight SI8

Found max-
weighted pattern?

Yes
\ 4

Recommend the |
Pattern

Want to .
S No End
continue’

Figure 4. Process model: Primary recommendation

eters, procedural steps and output for our DPR prototype in
two different levels. For the first level of recommendation,
DPR considers mainly user experience and knowledge on
design patterns and the pattern knowledge-base introduced
by our prototype. During the processing phase, first level rec-
ommendation relies on questionnaire using GQM model [2],
use of a weighting scheme, and finally ranking for selecting
a pattern in the output phase. For the second level recom-
mendation, all the input elements from the first level are
used as input factor, additionally some initial designs are
also used that will be re-organized according to some pattern
specifications.

V. WEIGHTING AND PATTERN SELECTION

We use a simple case study to evaluate our approach.
Company A develops a program in Java to display all of
its product details in the console. This Java program is
simple. It takes an Iterator collection and iterates it to display
product detail one by one. However, Company A outsource
Product back-end system to a vendor called Vendor B.
Vendor B came out with a system that will return all

Input Process put
1 1

Pattern Knowledge Questionnaire using Recommended design
Base GQM model pattern
Level 1 User Knowledge Application of
(Primary) (Experience) weighting scheme
Scoring and ranking

Level 2* Refactoring package Refactored system

Level I Inputs =z = y
(Secondary) design packages

+

Initial designs

Figure 5. DPR Process Summary: primary & secondary

products as Enumeration collection. But returning Product
as Enumeration will be a problem while Company A system
is design to accept product as Iterator. Company A design
are all based on Iterator collection to function, now Vendor
B uses an old and obsolete type (Enumeration). They require
a solution to display the products somehow. Above scenario
sounds common, and here comes Adapter. What designer
must create is an adapter class that can convert Enumeration

to Iterator. We simulate this scenario for our case study.
To illustrate the pattern selection procedure, we present

a high-level overview of the interaction between the system
and the designer (see Table I). Based on the response of
level-0 question, all the design patterns and their internally
constructed GQM model will be presented to the designer
as well-formed questions, which have either ‘yes’ or ‘no’ or
‘do not know’ responses and the corresponding weight. Let
us say, designer responded with the ‘Architectural’ pattern
for the level-0 question. To show an example, we present
here only three candidate design (two architectural and one
behavioral) patterns, i.e., Adapter, Decorator and Visitor.
Visitor is related to Adapter in its applicability. The first
question, ‘Do you need to use several existing subclasses?’
is dedicated to Adapter pattern. So, if designer responds with
‘yes’ and a weight of 8, then this value will be added to
Adapter total. For all the ‘yes’ responses, the corresponding
weight will be directly added to the corresponding patterns.
Also, ‘no’ response will affect all the patterns other than
Adapter and Visitor. For a question with response ‘no’, when
there is no link, the weight will impact all the other patterns’
total. For a question, i.e., question 10, if the response is ‘Do
not know’, then by default the ‘0’ will be added to the total
indicating that it has no impact. For this example, in Table
I, the Adapter pattern has the total weight of 59, Visitor 40
and Decorator of 13. So, DPR will suggest Adapter as it has
the highest total weight (59).

VI. EVALUATION

A. Subjective Evaluation

We conducted a small experiment with the DPR pro-
totype for primary-level recommendation. Our experiment
involved six graduate students and two IT professionals,
hence referred to as subjects. We give a small introduc-
tion of the DPR core and the case study (in Section V).
Subjects were asked to simulate the GQM model. At the

Initial designs of
the system by user

v

making Information Array

!

Gathering of design
information with pattern
information (Similarity

Calculation)

Na ///
~"Similarity \
“thresholdLimit? ~
\\(//’
No Yes
Y

Recommend a
Design pattern to
form a new package

_~~ Does y
< information >—Yes»
- e \
\Jml:«hcd/
\//

Parsing XML design }‘

Knowledge
Base

{ XML Database

[Of Design
\ patterns

N

End

~ —

Converting design
to XML

Figure 6. Process model: Secondary recommendation

Table I

A DESIGNER-DPR INTERACTIVE SESSION: RESPONSE(R),

WEIGHT(W), ADAPTER(A), VISITOR(V) AND DECORATOR(D)

Questions R w A \Y D
1. Do you need to use several existing yes 8 8 - -
subclasses?

2. Do you want to create a reusable class? yes 8 8 - -
3. Do you want to use existing class? yes 9 9 9 9
4. Do you want to perform operations on no 4 4 - 4
objects?

5. Do you want to avoid polluting classes yes 7 - 7 -
with new operations?

6. Do you want to define new operations no 6 6 - -
over the structure?

7. Do you want to add responsibilities no 7 7 7 -
to individual objects dynamically without

affecting other?

8. Do you want to use class for responsi- no 9 9 9 -
bilities that can be withdrawn?

9. Is the extension by subclassing is im- | no 8 8 8 -
practical for your problem?

10.Do you want your clients to be able | - 0 0 0 0
to ignore different compositions of objects

and individual objects?

11.Do you want to represent part-whole yes 7 - - -
hierarchies of objects?

Total weight given by the designer 71 59 40 13

Table II
SUMMARY OF THE SUBJECTIVE EVALUATION FOR DPR

Sub | OO DP NoQ TotWeight Pattern
1 medium beginner 11 >51 Adapter
2 beginner beginner 11 >51 Visitor
3 advanced medium 10 <50 Adapter
4 medium beginner 11 >51 both
5 advanced medium 11 <50 Adapter
6 advanced medium 11 <50 Visitor
7 medium low 11 <50 Visitor
8 advanced beginner 11 <50 Visitor
Summary
beginner low NoQ<5 <50 succeed
12.5% 12.5% 0% 62.5% 50
medium beginner NoQ>6 >51 failed
37.5% 50% 100% 37.5% 50
advanced medium
50% 37.5%
Table III
COMPARISON: DPR, ESSDP, REBUILDER AND RS
Approach Pros/Cons Additional Features
DPR Pros: max 11 Questions, selection knowledge base, package
based on ranking, flexible weight- refactoring, user session
ing scheme
Cons: success certainity +50%
ESSDP [8] Pros: 60-88% certainity(> DPR), knowledge base, runtime

selection based on ranking
Cons: 14-18 Questions(> DPR)

reasoning

ReBuilder [9] human & machine read-

able pattern format

Pros: shows pattern list, ranked-
list of results

Cons: requires patterns pre-
processing, no relevance score,
patterns details not shown

Recommender
System [6]

Pros: Simple based on textual descrip-
tions of DPs
key-word based problem

specification

Cons: Suitable only for new de-
signers, Unable to handle com-
plex, does not use collaborative
filtering, no feedback from users
& large design problem

end of the experiment, subjects were also provided with
a questionnaire. We consider our experiment to be partial
and preliminary due to small number of subjects and lack
of detail assessment. However, this initial assessment is
considered useful, as it helps us identifying weaknesses and
improvements. For example, we may need to add more
pattern specific or contextual questions that will facilitate
users and ease selection pressure.

B. Discussion and Comparison

In Table II, OO column denotes how good subjects knew
overall OO concepts. The level of knowledge on design
pattern (DP column) was not very convincing, i.e., 50% of
the subjects were at the beginner level. We had a set of total
11 questions. But, 50% of the subjects could identify the
correct pattern and 50% suggested different patterns. For our
case study in Section V, the correct pattern was ‘Adapter’.

An interesting user behavior that we can observe from
Table II, users with OO level as advanced or medium and
DP level as medium, could mostly suggest the right pattern
for the case study presented in Section V. That indicates the
significant importance of user experience and knowledge,
for applying and selecting design patterns during system

design. Hence, the small subjective evaluation positively
indicates the effectiveness of the proposed DPR prototype.
Table III shows a comparison among different approaches
in the literature [10]. Based on this survey and our pre-
liminary results with DPR, from Table IIl, we can draw
a clear conclusion that DPR is more efficient with a few
additional features, compared to ESSDP [8], ReBuilder [9]
and Recommender System [6] in terms of flexible weighting
scheme and package (models) refactoring scope.

VII. CONCLUSIONS AND FUTURE WORK

We presented a DPR prototype (Section IV) for suggesting
design patterns using an interactive session. We used an
GQM approach [2]. Also, for secondary level recommen-
dation, we give a high-level overview of the approach. Our
knowledge-base (KB) contains all the pattern details and
relative information (Section IV-A). In our DPR prototype,
all 23 design patterns identified by Gamma et al. [4] can
be included. We present a sample interactive session with
designer in Table I. Our preliminary evaluation of DPR
(Table II) by eight subjects shows DPR is relatively effective
than the most closest literature work [8] by minimizing the
number of questions and maximizing selection flexibility.
As our current and future work, we are trying to come up
with a tool that can suggest design patterns providing the
interactivity for designers. More specifically, for secondary
level recommendation, deployment of DPR for re-organizing
model components into groups, for individual selected pat-
tern, can be a prominent solution.

REFERENCES

[1] Sommerville and Sawyer. Requirements Engineering: A Good
Practice Guide. 1997.

[2] N. E. Fenton, S. L. Pfleeger Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co, Boston, MA, USA,
1998.

[3] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King, and S. Angel. A Pattern Language. Oxford
University Press, New York, 1977.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. 1995.

[5] J. K. et al. Foreword, Proc. 2007 ACM Conf. Recommender
Systems. ACM Conference Recommender Systems, pp-3,
2007.

[6] Y. G. Guéhéneuc, and M. Rabih. A Simple Recommender
System for Design Patterns, Proceedings of the 1st EuroPLoP
Focus Group on Pattern Repositories (2007)

[7]1 T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Transaction Software Engineering, October
2005.

[8] R. S. David C. Kung, H. Bhambhani and G. Pancholi. An
expert system for suggesting design patterns - a methodology
and a prototype. In Software Engineering with Computational
Intelligence, 2003.

[9] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, José Luis
Ferreira and Carlos Bento 2002. Using CBR for Automation of
Software Design Patterns. In Proceedings of the 6th European
Conference on Advances in Case-Based Reasoning, pp:534-
548.

[10] A. Birukou, A Survey of Existing Approaches for Pattern
Search and Selection, EuroPLoP 2010, Bavaria, Germany.

