
Specification and Detection of SOA Antipatterns
in Web Services

Francis Palma1,2, Naouel Moha2, Guy Tremblay2, and Yann-Gaël Guéhéneuc1

1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma, yann-gael.gueheneuc}@polymtl.ca

2 Département d’informatique, Université du Québec à Montréal, Canada
{moha.naouel, tremblay.guy}@uqam.ca

Abstract. Service Based Systems, composed of Web Services (WSs),
offer promising solutions to software development problems for com-
panies. Like other software artefacts, WSs evolve due to the changed
user requirements and execution contexts, which may introduce poor
solutions—Antipatterns—may cause (1) degradation of design and qual-
ity of service (QoS) and (2) difficult maintenance and evolution. Thus,
the automatic detection of antipatterns in WSs, which aims at evaluat-
ing their design and QoS requires attention. We propose SODA-W (Service
Oriented Detection for Antipatterns in Web services), an approach sup-
ported by a framework for specifying and detecting antipatterns in WSs.
Using SODA-W, we specify ten antipatterns, including God Object Web
Service and Fine Grained Web Service, and perform their detection in
two different corpora: (1) 13 weather-related and (2) 109 financial-related
WSs. SODA-W can specify and detect antipatterns in WSs with an average
precision of more than 75% and a recall of 100%.

Keywords: Antipatterns · Web Services · Specification · Detection

1 Introduction

Service Oriented Architecture (SOA) has already become the prevailing archi-
tectural style used in the industry [6]. SOA helps developing low-cost, reusable,
and distributed business solutions by combining services, which are independent,
portable, and interoperable program units that can be discovered and invoked
through the Internet. In practice, SOA can be realised using various technologies
and architectural styles including SCA (Service Component Architecture) [5],
REST (REpresentational State Transfer), and Web services.

Web services is the leading SOA technology used nowadays to develop Service-
based systems (SBSs) [15]. Amazon, Google, eBay, FedEx, PayPal, and many
more companies, all leverage Web services. In the distributed systems literature,
the termWeb service is commonly used to refer to both SOAP-based and RESTful
Web services. Nevertheless, in this paper, we focus on SOAP-based Web services
because currently they are more widely adopted than those based on REST [15].

SBSs evolve to meet new requirements or to adapt to the changed execu-
tion contexts, e.g., changes in transport protocols or in service contracts. Such

changes may deteriorate the design and implementation, and worsen the QoS of
Web services, and may cause the introduction of poor solutions, known as An-
tipatterns—in opposition to design patterns that are good solutions to recurring
problems. In general, it has been shown that antipatterns negatively impact the
evolution and maintenance of software systems [12].

God Object Web Service and Fine Grained Web Service are the two most
common antipatterns in Web services [4]. The God Object Web Service describes
a Web service that contains a large number of very low cohesive operations in
its interface, related to different business abstractions. Being overloaded with a
multitude of operations, a God Object Web Service may also have high response
time and low availability. In contrast, Fine Grained Web Service, with few low
cohesive operations, implements only a part of an abstraction. Such Web services
often require several other coupled Web services to complete an abstraction,
resulting in higher architectural complexity.

Despite the importance and extensive usage of Web services, no specification
and automated approach for the detection of such antipatterns in Web services
has been proposed. Such an approach to analyse the design and QoS of Web
services and automatically identify antipatterns would help the maintenance
and evolution of Web services. In fact, a few contributions have been made in
the literature for the detection of SOA antipatterns in Web services including
those in [14, 17, 18]. Yet, none of them provide the specification and all of them
focus on the static analysis of Web service description files (e.g., [17, 18]) or on
antipatterns in other SOA technologies (e.g., SCA [14]).

With the goal of assessing the design and QoS of Web services and filling the
gap in the literature, we propose the SODA-W approach (Service Oriented Detec-
tion for Antipatterns in Web services) inspired from SODA [14]. SODA, supported
by an underlying framework SOFA (Service Oriented Framework for Antipat-
terns), was the first approach dedicated to the specification and detection of
antipatterns in SCA systems; it is, however, restricted to SCA. Instead, SODA-W is
supported by an extended version of SOFA and is dedicated to the specification
of SOA antipatterns and their automatic detection in Web services. The extended
SOFA provides the means to analyse Web services statically, dynamically, or com-
bining them. Static analyses refer to measuring the structural properties of Web
services, whereas dynamic analyses invoke the real Web services and measure
different properties, such as response time.

Therefore, the main contributions of this paper that leverage SODA-W are: (1)
we add ten new metrics to our previous language proposed in [14] and adapt five
other existing metrics in SOFA, (2) we specify ten Web service-specific antipat-
terns and perform the structural and semantic analysis of service interfaces, and
finally (3) we perform detection for those ten antipatterns to validate SODA-W

with more than 120 Web services in two different experiments. For the valida-
tion, we implement detection algorithms for the ten SOA antipatterns from their
specifications, which we then apply on Web services. We perform the manual
validation of the detection results in terms of precision, recall, and specificity.

Our results show that SODA-W allows to specify and detect SOA antipatterns with
an average precision of more than 75% and a recall of 100%.

The remainder of this paper is organised as follows. Section 2 surveys related
work on the detection of antipatterns, and in SBSs in particular. Section 3 lays
out the approach, SODA-W, along with the language and the underlying frame-
work, SOFA. Section 4 presents the experiments performed on Web services for
validating SODA-W. Finally, Section 5 concludes and sketches future work.

2 Related Work

SOA antipatterns, Web service-specific antipatterns in particular, and their spec-
ification and detection are still in their infancy. A few books and articles address
SOA antipatterns and most of the references are online [4, 13, 19]. Dudney et
al. [4] first suggested a list of 52 antipatterns that are common in service-based
architectures, and particularly in Web services. Antipatterns from that book are
described informally. Rotem-Gal-Oz et al. [19] in their book listed some other
SOA antipatterns also informally. In their paper, Král et al. [11] introduced seven
SOA antipatterns that appear due to the improper use of SOA principles and
standards. All the above works contributed to the existing catalogue of SOA

antipatterns, but did not discuss their specification or detection.

A number of detection approaches [10,16,21] exist for object-oriented (OO) an-
tipatterns. However, OO approaches are not applicable to the detection of SOA an-
tipatterns because: (1) SOA is concerned with services as building blocks, whereas
OO is concerned with classes, i.e., services are coarser than classes in terms of
granularity and (2) the highly dynamic nature of SOA compared to OO systems.
Just a few works studied the detection of SOA antipatterns in Web services.
Rodriguez et al. [18] performed detection for a set of Web service-specific an-
tipatterns related to WSDL proposed by Heß et al. [9]. However, the primary focus
of the work was not analysing or improving the design of Web services, rather
on the WSDL writing conventions to improve their discoverability.

Moha et al. [14] proposed the SODA approach for specifying and detecting
antipatterns in SCA systems (Service Component Architecture), relying on a
rule-based language to specify antipatterns at a higher-level of abstraction than
detection algorithms. In SODA, the detection algorithms are generated automat-
ically and applied on SCA systems with a high accuracy. However, the proposed
approach can only deal with local SCA components developed with plain Java
and cannot handle remote Web services.

In another study, Rodriguez et al. [17] described EasySOC and provided
a set of guidelines for service providers to avoid bad practices while writing
WSDLs. Based on some heuristics, the authors detected eight bad practices in
the writing of WSDL for Web services. The heuristics are simple rules based on
pattern matching. The authors did not consider the design and QoS of the Web
services and analysed the WSDL files statically. In this paper, instead, we analyse
the Web services both statically and dynamically.

More recently, Coscia et al. [3] performed a statistical correlation analysis
between a set of traditional code-level OO metrics and WSDL-level service metrics,
and found a statistically significant correlation between them. Still, the main
focus was not on identifying bad practices or poor design decisions in the service
interfaces. Also, Sindhgatta et al. [22] performed a thorough literature survey
on service cohesion, coupling, and reusability metrics, and proposed five new
cohesion and coupling metrics, which they described as new quality criteria for
service design. These metrics are even at the WSDL code-level; in contrast, we
assess the design and QoS of Web services.

Given the above limitations in the literature, we try to come up with a viable
solution for specifying and detecting SOA antipatterns in Web services.

3 Approach

We now describe the SODA-W (Service Oriented Detection for Antipatterns in Web
services) approach dedicated to Web services (WSs). SODA-W involves three steps
from the specification of Web service-specific antipatterns to their detection.
Step 1. Specification of SOA Antipatterns: We identify the relevant properties of
Web service-specific antipatterns that we use to extend our previous domain-
specific language (DSL) [14]. We then use this DSL to specify antipatterns.
Step 2. Generation of Detection Algorithms: This step involves the generation
of detection algorithms from the specifications in the former step. In this paper,
we performed this step manually by implementing concretely the algorithms in
conformance with the rules specified in Step 1. We plan to automate this step.
Step 3. Detection of SOA Antipatterns: We apply the detection algorithms on a
set of real WSs to detect antipatterns.

The following sections detail the first two steps. The last step is discussed in
Section 4, where we perform the validation of SODA-W.

3.1 Specification of SOA Antipatterns

To specify SOA antipatterns, we performed a thorough domain analysis of an-
tipatterns for WSs. We investigated their definitions and descriptions in the lit-
erature [4, 9, 11, 13, 18] because these mostly discussed WS-specific antipatterns.
We identified a set of properties related to each antipattern, including static
properties related to service design, e.g., cohesion and coupling; and dynamic
properties, e.g., response time and availability. In general, static properties are
recoverable from service interfaces. In contrast, dynamic properties are obtained
by concretely invoking the WSs. We used these relevant properties to extend our
DSL from [14]. Using this DSL, engineers can specify SOA antipatterns in the form
of a rule-based language, using their own judgment and experience. A DSL al-
lows engineers to focus on what to detect without being concerned about how
to detect [2]. In fact, our DSL is implementation-independent, i.e., it can be used
regardless of the underlying technology of the system under analysis. However,
the DSL needs to be extended for each new technology.

1 rule card ::= RULE CARD:rule cardName { (rule)+ };
2 rule ::= RULE:ruleName { content rule };

3 content rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE CARD: rule cardName

5 ruleType ::= ruleName | rule cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id metric ordi value
8 | id metric comparator num value
9 id metric ::= ALS | ANIO | ANP | ANPT | ANAO | ARIP | ARIO | ARIM | CPL | COH | NCO
10 | NOD | NOPT | NPT | NVMS | NVOS | RGTS
11 | A | RT
12 ordi value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
13 comparator ::= < | ≤ | = | ≥ | >

14 rule cardName, ruleName, ruleClass ∈ string
15 num value ∈ double

Fig. 1: BNF grammar of rule cards for SODA-W.

The syntax of our DSL is shown in Figure 1 using a Backus-Naur Form (BNF)
grammar. We apply a rule-based technique for specifying antipatterns, i.e., each
rule card combines a set of rules. The different constituents of our DSL are as
follows: a rule card is characterised by a name and a set of related rules (Figure
1, line 1). A rule (lines 3 and 4) is associated with a metric or it may combine
other rules using different set operators (line 6) including intersection (INTER) or
union (UNION). A rule can be a singleton rule or it can refer to another rule card
(line 4). A metric may involve an ordinary value or it can have a comparator
with a numeric value (lines 7 and 8). Ordinal values range from VERY LOW to
VERY HIGH (line 12), and are used to define values compared to other candidate
WSs under analysis. We use the box-plot statistical technique [1] to associate
ordinal values with numeric values, to automatically set thresholds. Finally, the
comparators include common mathematical operators (line 13).

Our metric suite (lines 9 to 11) includes both static (lines 9 and 10) and
dynamic metrics (line 11). In [14], we had a set of 13 metrics defined for SCA

domain. In this paper, we extend the DSL by adding ten new metrics specific
to the domain of WSs as shown in Table 1. We also adapt some previously
existing metrics (see Table 1). This adaptation is essential due to the non-trivial
differences between SCA and WSs. For instance, SCA applications are built with
components, while WSs use services as their first class entities. The other metrics
remain the same as in [14] as noted in Table 1.

The ARIP, ARIO, and ARIM metrics combine both the structural and seman-
tic similarity computation. Structural similarity uses the well-known Leven-
shtein Distance algorithm, whereas semantic similarity uses WordNet3(a) and
CoreNLP3(b). WordNet is a widely used lexical database that groups nouns,
verbs, adjectives, etc. into the sets of synsets, i.e., cognitive synonyms, each rep-

3 (a) wordnet.princeton.edu (b) nlp.stanford.edu/software/corenlp.shtml

Table 1: The list of 19 metrics in SODA-W approach.
Metrics Full Names Versions

ALS Average Length of Signatures new
ARIP Average Ratio of Identical Port-Types new
ARIO Average Ratio of Identical Operations new
ARIM Average Ratio of Identical Messages new
NCO Number of Crud Operations new
NOPT Number of Operations in Port-Types new
NPT Number of Port-Types new
NVMS Number of Verbs in Message Signatures new
NVOS Number of Verbs in Operation Signatures new
RGTS Ratio of General Terms in Signatures new
ANP Average Number of Parameters in Operations adapted
ANPT Average Number of Primitive Type Parameters adapted
NOD Number of Operations Declared adapted
ANIO Average Number of Identical Operations adapted
ANAO Average Number of Accessor Operations adapted
CPL Coupling same
COH Cohesion same
A Availability same
RT Response Time same

1 RULE CARD: GodObjectWebService {
2 RULE: GodObjectWebService {INTER
2 LowCohesion MultiOperation
2 HighRT LowA};
3 RULE: LowCohesion {COH VERY LOW};
4 RULE: MultiOperation {NOD HIGH};
5 RULE: HighRT {RT VERY HIGH};
6 RULE: LowA {A LOW};
7 };

(a) God Object Web Service

1 RULE CARD: FineGrainedWebService {
2 RULE: FineGrainedWebService {INTER
2 FewOperation HighCoupling
2 HighCohesion};
3 RULE: FewOperation {NOD LOW};
4 RULE: HighCoupling {CPL VERY HIGH};
5 RULE: HighCohesion {COH LOW};
6 };

(b) Fine Grained Web Service

Fig. 2: Rule cards for God Object Web Service and Fine Grained Web Service

resenting a distinct concept. We use WordNet to find the cognitive similarity
between two (sets of) operations, messages, or port-types. We use Stanford’s
CoreNLP: (1) to find the base forms of a set of signatures of operations, mes-
sages, or port-types and (2) to annotate them with the part-of-speech (POS)
tagger after we split the signatures based on the CamelCase.

Figure 2 shows the rule cards of the God Object Web Service [4] and Fine
Grained Web Service [4] antipatterns as discussed in Section 1. A God Object
Web Service (Figure 2(a)) is characterised by a high number of low cohesive
operations and results in very high response time with low availability. A Fine
Grained Web Service (Figure 2(b)) contains a fewer number of low cohesive
operations with a high coupling resulting in higher development complexity.
We also specify eight other WS-specific SOA antipatterns, whose rule cards are
available in Section 4.

3.2 Generation of Detection Algorithms

The second step involves the implementation of the detection algorithms from
the rule cards specified for each SOA antipattern. For each antipattern, we im-
plement all the related metrics following its specification and write the detection
algorithm in Java, which can directly be applied on any WSs. In the future, we

will automate this algorithm generation process following a similar technique
presented in [14].

3.3 Underlying Framework

We further develop the SOFA framework (Service Oriented Framework for An-
tipatterns) [14] to support the detection of SOA antipatterns in WSs. SOFA itself
is developed as an SBS based on the SCA (Service Component Architecture)
standards [5] and is composed of several SCA components. Figure 3 depicts the
SOFA’s key components: (1) Rule Specification—specifies rules relying on several
other components, such as Rule, Metric, Operator, and Boxplot. The Box-Plot
determines the ordinal values based on the numerical values computed for all
the services under analysis; (2) Algorithm Generation—generates detection algo-
rithms based on specified rules; and (3) Detection—applies detection algorithms
generated in Algorithm Generation component on WSs.

Fig. 3: The SOFA framework.

We added a new Web Service Handler component to the SOFA to allow the
detection of Web service-specific antipatterns. The different functionalities per-
formed by the Web Service Handler component include: (1) given keywords, it
returns a list of WSs from a search engine, (2) it then filters broken service de-
scriptions or unavailable services, and finally (3) for all WSs, it generates a list
of SCA components. Concretely, these SCA components wrap WSs as our SOFA

framework can only introspect SCA components.

We extended the SOFA framework by: (1) adding ten new Web service-specific
metrics and (2) adapting five existing SCA-specific metrics. Combining those
new and adapted metrics, we specify ten Web service-specific antipatterns as
described in Figure 4 and perform their detection using SOFA. The addition of an
antipattern requires the implementation of each metric following its specification.
A metric can be reused for other antipatterns if they share the same metric in
their specifications.

We use FraSCAti [20] as SOFA’s runtime support. FraSCAti, itself developed
as an SCA 1.1 application [5], provides a runtime environment for SCA appli-
cations. Being based on SCA, FraSCAti can provide component-based systems
on top of diverse SOA technologies including Web services. In SOFA, we wrap
each technology-specific services within an SCA component, thus providing a
technology-agnostic platform to detect SOA antipatterns.

4 Validation

We want to show the completeness and the extensibility of our DSL, the precise-
ness of the detection algorithms, and the specificity of our rule cards. Therefore,
we perform experiments with two sets of Web services (WSs) collected using a
search engine: (1) 13 weather-related and (2) 109 finance-related WSs.

4.1 Hypotheses

We state three hypotheses that we want to examine in our experiments.
H1. Generality: Our DSL allows the specification of various SOA antipatterns,
from simple to more complex ones. This hypothesis claims the applicability of
our SODA-W approach that relies on metric-based (i.e., 17 static and 2 dynamic
metrics) rule cards for specifying ten Web service-specific SOA antipatterns.
H2. Accuracy: The detection algorithms have an average precision of more than
75% and a recall of 100%, i.e., more than three-quarters of detected antipatterns
are true positive and we do not miss any existing antipatterns. Having a trade-
off between precision and recall, we presume that 75% precision is acceptable
while our objective is to detect all existing antipatterns, i.e., 100% recall. We
also show the specificity of the rule cards. This hypothesis claims the accuracy
of the specified rule cards and the detection algorithms.
H3. Extensibility: Our DSL and SOFA framework are extensible for adding new
metrics and new SOA antipatterns. In this hypothesis, we claim that the new
metrics can be added and combined to specify new SOA antipatterns and that
the SOFA framework can handle new antipatterns, including some specific to WSs,
and detect them automatically.

4.2 Subjects

We specify ten different SOA antipatterns that are commonly found in WSs by
applying our SODA-W approach. Figure 4 lists those Web service-specific SOA

antipatterns. Among those ten antipatterns, eight are collected from the liter-
ature [4, 9, 11, 13, 18]. We also define two new antipatterns, namely Duplicated
Web Service and Data Web Service inspired from OO antipatterns: Silo Approach
and Data Class. Figure 4 emphasises the relevant properties of each antipattern
in bold-italics. Figure 5 shows the specifications of those antipatterns. We give
concrete examples of those antipatterns and show how they manifest in practice
on our site4.
4 http://sofa.uqam.ca/soda-w/

Ambiguous Name [18] is an antipattern where the developers use the names of interface elements
(e.g., port-types, operations, and messages) that are very short or long , include too general terms, or
even show the improper use of verbs, etc. Ambiguous names are not semantically and syntactically
sound and impact the discoverability and the reusability of a Web service.

Chatty Web Service [4] is an antipattern where a high number of operations are required to
complete one abstraction where the operations are typically attribute-level setters or getters. A
chatty Web service may have many fine grained operations for which: (1) maintenance becomes
harder since inferring the order of invocation is difficult and (2) many interactions are required,
which degrades the overall performance with higher response time.

CRUDy Interface [7] is an antipattern where the design encourages services the RPC-like behavior
by creating CRUD-type operations, e.g., create X(), read Y(), etc. Interfaces designed in that way
might be chatty because multiple operations need to be invoked to achieve one goal. In general,
CRUD operations should not be exposed via interfaces.

Data Web Service typically contains accessor operations, i.e., getters and setters. In a distributed
environment, some Web services that may only perform some simple information retrieval or data
access operations. A Data Web Service usually deals with very small messages of primitive types
and may have high data cohesion.

Duplicated Web Service, corresponds to a set of highly similar Web services. Because Web
services are implemented multiple times as a result of the silo approach, there might exist common
or identical operations with the same names and–or message parameters.

Fine Grained Web Service [4] is a small Web service with few operations implementing only a
part of an abstraction. Such a Web service often requires several coupled Web services to complete
an abstraction, resulting in higher development complexity, reduced usability . Moreover, since the
related operations for an abstraction spread across services, individual services are less cohesive.

God Object Web Service [4] corresponds to a Web service that contains a large number of
operations related to different business abstractions. Often the client interactions break due to
frequent changes in the Web service definition, hence cause low availability . This antipattern affects
the reusability because the operations are very low cohesive. Moreover, being overloaded with a
multitude of operations, this antipattern may also result in high response time.

Low Cohesive Operations in the Same PortType [18] is an antipattern where developers place
low cohesive operations in a single prototype. From the Web services perspective, if the operations
belonging to the same prototype do not provide a set of semantically related operations, the prototype
becomes less cohesive.

Maybe It’s Not RPC [4] is an antipattern where the Web service mainly provides CRUD operations
with a large number of parameters. This antipattern causes poor system performance because the
clients often wait for the synchronous responses.

Redundant PortTypes [9] is an antipattern where multiple port-types are duplicated with the
similar set of operations. Very often, such port-types deal with the same messages. The Redundant
PortType antipattern may negatively impact the ranking of the Web Services.

Fig. 4: List of the ten SOA antipatterns in Web services.

4.3 Objects

Unlike open-source systems in OO, freely available real WSs are difficult to find
for validating detection algorithms. There are some Web service search engines,
like eil.cs.txstate.edu/ServiceXplorer, programmableweb.com, myexper-
iment.org, and taverna.org.uk, however, the number of such search engines
is limited and often may not provide healthy service interface.

We perform experiments on two different sets of WSs collected from a Web
service search engine, programmableweb.com. The first set includes 13 weather-
related WSs (keyword ‘Weather’); and the second set includes 109 finance-related

1 RULE CARD: AmbiguousName {
2 RULE: AmbiguousName {INTER GeneralTerm
3 ShortORLongSignature VerbedMessage
4 MultiVerbedOperation};
5 RULE: ShortORLongSignature {UNION
6 ShortSignature LongSignature};
7 RULE: LongSignature {ALS VERY HIGH};
8 RULE: ShortSignature {ALS VERY LOW};
9 RULE: GeneralTerm {RGTS HIGH};
10 RULE: VerbedMessage {NVMS > 0};
11 RULE: MultiVerbedOperation {NVOS > 1};
12 };

(a) Ambiguous Name

1 RULE CARD: ChattyWebService {
2 RULE: ChattyWebService {INTER LowCohesion
3 HighDataAccessor MultiOperation
4 LowPerformance};
5 RULE: LowCohesion {COH LOW};
6 RULE: HighDataAccessor {ANAO VERY HIGH};
7 RULE: MultiOperation {NOD HIGH};
8 RULE: LowPerformance {INTER HighRT LowA};
9 RULE: HighRT {RT HIGH};
10 RULE: LowA {A LOW};
11 };

(b) Chatty Web Service

1 RULE CARD: CRUDyInterface {
2 RULE: CRUDyInterface {INTER ChattyInterface
3 HighCRUDOperation};
4 RULE: ChattyInterface {RULE CARD:
5 ChattyWebService};
6 RULE: HighCRUDOperation {NCO > 1};
7 };

(c) CRUDy Interface

1 RULE CARD: DataWebService {
2 RULE: DataWebService {INTER HighCohesion
3 PrimitiveParameter HighAccessor
4 LowParameter};
5 RULE: HighCohesion {COH HIGH};
6 RULE: PrimitiveParameter {ANPT HIGH};
7 RULE: HighAccessor {ANAO HIGH};
8 RULE: LowParameter {ANP LOW};
9 };

(d) Data Web Service

1 RULE CARD: DuplicatedWebService {
2 RULE: DuplicatedWebService {INTER
3 IdenticalPortType IdenticalOperation};
4 RULE: IdenticalPortType {ARIP HIGH};
5 RULE: IdenticalOperation {ARIO HIGH};
6 };

(e) Duplicated Web Service

1 RULE CARD: LowCohesiveOperations {
2 RULE: LowCohesiveOperations {INTER
3 MultiOperation LowCohesivePT};
4 RULE: MultiOperation {NOD HIGH};
5 RULE: LowCohesivePT {ARIO LOW};
6 };

(f) Low Cohesive Operations

1 RULE CARD: MaybeItsNotRPC {
2 RULE: MaybeItsNotRPC {INTER HighRT
3 HighCRUDOperation HighParameter};
4 RULE: HighRT {RT HIGH};
5 RULE: HighCRUDOperation {NCO VERY HIGH};
6 RULE: HighParameter {ANP HIGH};
7 };

(g) Maybe It’s Not RPC

1 RULE CARD: RedundantPortType {
2 RULE: RedundantPortType {INTER
3 MultiPortType MultiOps HighCohesivePT};
4 RULE: MultiPortType {NPT > 1};
5 RULE: MultiOps {NOPT > 1};
6 RULE: HighCohesivePT {ARIP VERY HIGH};
7 };

(h) Redundant PortTypes

Fig. 5: Rule cards for different SOA antipatterns in Web services.

WSs (keyword ‘Finance’). The complete list of all service interfaces that we
experimented with is available online on our site4.

4.4 Process

We specified the rule cards for ten Web service-specific antipatterns and imple-
mented their detection algorithms using our SOFA framework. Then, we applied
those algorithms on the WSs and reported any existing antipatterns. We man-
ually validated the detection results to: (1) identify the true positives and (2)
to find false negatives. The validation was performed by two students; we pro-
vided them with the descriptions of antipatterns and the service description file
for each Web service along with its average response time. To measure the re-

sponse time regardless of the network latency and physical location of a Web
service, using the SAAJ5(a) standard implementation and SoapUI5(b), we arbi-
trarily invoked at least three operations from each real Web service, measured
their response times, and took the average. We used precision and recall [8] to
measure our detection accuracy. Precision concerns the ratio between the true
detected antipatterns and all detected antipatterns, and recall is the ratio be-
tween the true detected antipatterns and all existing true antipatterns. Finally,
we also calculate the specificity of our rule cards, i.e., the ratio between all WSs
identified as non-antipattern and total existing true negatives.

4.5 Results

Tables 2 and 3 present the detailed detection results for the ten SOA antipatterns.
Each table reports the antipatterns in the first column followed by the involved
WSs in the second. The third column shows the metric values for each Web
service once it is identified as an antipattern. The fourth and fifth columns
report the box-plot threshold values for each metric and the detection time for
each antipattern, respectively. The last two columns show the precision (P) and
recall (R) of our detection algorithms.

4.6 Details of the Results on 13 Weather Web services

We briefly explain the detection results obtained from the first experiment as pre-
sented in Table 2. We identified five WSs involved in four antipatterns, namely,
Ambiguous Name, Fine Grained Web Service, Low Cohesive Operations, and
Redundant PortTypes. For instance, the AIP3 PV ImpactCallback in Table 2 is
identified as an Ambiguous Name antipattern because this Web service offers op-
erations with the signatures that (1) are very long (ALS=0.675), (2) use too many
general terms (RGTS=0.85), (3) deal with many messages having verbs in their
signatures (NVMS=26), and (4) have multiple verbs or action names (NVOS=7).
In comparison to the median values, those values are high, i.e., greater than
the median but less or equal to the max. Therefore, we appropriately detected
AIP3 PV ImpactCallback as Ambiguous Name and had a precision and recall of
100% as confirmed by the manual validation.

We also detected SrtmWs-PortType, ShadowWs-PortType, and Hydro1KWs-

PortType as Fine Grained Web Service antipatterns because they have very low
values for NOD (i.e., 2) and COH (i.e., 0.0). As calculated by the Box-Plot com-
ponent, the NOD values are low in comparison with the median of 5.5. Similarly,
with only two operations defined, the cohesion values are not significant com-
pared to other WSs, whose COH values are between 0.216 and 0.443. The manual
validation revealed the correct identification of this antipattern for ShadowWs-
PortType and Hydro1KWs-PortType. However, for the SrtmWs-PortType, the
manual validation suggested that the operations defined in its service interface

5 (a) saaj.java.net (b) www.soapui.org/

Table 2: Details on detection results for 13 Weather-related Web services.

Antipatterns Involved Metrics Boxplot Values Detect P R
Web Services Min|Median|Max Time

Ambiguous Name

ALS 0.675 0.027|0.463|0.675
0.69sAIP3 PV Impact- RGTS 0.85 0.0|0.0|0.85 [1/1] [1/1]

Callback NVMS 26 4|6|54 100% 100%
NVOS 7 1|3|20

Chatty none detected n/a n/a 300.23s – –
Web Service
CRUDy Interface none detected n/a n/a 244.48s – –
Data Web Service none detected n/a n/a 1.03s – –
Duplicated none detected n/a n/a 1.21s – –
Web Service

SrtmWsPortType
NOD 2 2|5.5|27

COH 0.0 0.0|0.216|0.443
Fine Grained

Hydro1KWsPortType
NOD 2 same as above 1.04s [2/3] [2/2]

Web Service COH 0.0 66.67% 100%

ShadowWsPortType
NOD 2 same as above

COH 0.0

God Object none detected n/a n/a 235.47s – –
Web Service
Low Cohesive

ndfdXMLPortType
NOD 12 2|3|27 1.13s [1/1] [1/1]

Operations ARIO 0.221 0.221|0.473|0.998 100% 100%
May be none detected n/a n/a 235.47s – –It’s Not RPC

AIP3 PV Impact
NOPT 3 2|3|27

Redundant ARIP 0.378 0.378|0.378|0.378 1.11s [2/2] [2/2]
PortTypes AIP3 PV Impact- NOPT 9 same as above 100% 100%

Callback ARIP 0.378

Average 102.19s [6/7] [6/6]
85.71% 100%

could fulfill an abstraction, and did not consider SrtmWs-PortType as an an-
tipattern. Thus, we have precision of 66.67% with 100% recall for this detection.

For this first experiment, our detection algorithms did not detect six other
antipatterns (see Table 2).

4.7 Details of the Results on 109 Finance Web services

Table 3 shows the detail on each antipattern detected in the second experi-
ment with 109 Finance-related WSs. We briefly describe here some antipatterns:
ForeignExchangeRates and TaarifCustoms are both identified as the Chatty
Web Service and CRUDy Interface antipatterns because of their low cohesion
(COH≈0.015), high average number of accessor operations (ANAO between 50 and
72.22), high number of operations (NOD between 9 and 24), and high response
time (RT more than 3s), compared to other WSs. The box-plot values are shown
in the corresponding rows for each metric. However, the manual analysis did not
confirm ForeignExchangeRates as a Chatty Web Service because the order of
invocation of the operations could easily be inferred from the service interface.
The CRUDy Interface includes the rule card of Chatty Web Service in its specifi-
cation. Therefore, the detection of ForeignExchangeRates as a CRUDy Interface
was also not confirmed by the manual validation. Hence, we had the precision
of 50% and recall of 100% for these two antipatterns.

We also identified wsIndicadoresEconomicosHttpPost, wsIndicadoresEc-
onomicosSoap, and wsIndicadoresEconomicosHttpGet as Redundant PortTypes

Table 3: Details on detection results for 109 Finance-related Web services.

Antipatterns Involved Metrics Boxplot Values Detect P R
Web Services Min|Median|Max Time

Ambiguous Name

BLiquidity

ALS 0.576 0.013|0.226|0.81

1.02s

RGTS 0.682 0.0|0.613|0.75
NVMS 42 1|64|482
NVOS 7 0|6.5|48

CurrencyServerWebService

ALS 0.136

same as aboveRGTS 0.682

NVMS 42 [8/8] [8/8]
NVOS 5 100% 100%

...
ProhibitedInvestors- ALS 0.158

same as aboveService RGTS 0.684

NVMS 12

NVOS 4

ForeignExchangeRates

COH 0.155 0.0|0.25|0.667

1.89s

ANAO 50 0.0|0.961|100
NOD 24 1|12|70

Chatty RT 3286 172|1985|8592 [1/2] [1/1]
Web Service

TaarifCustoms

COH 0.116

same as above

50% 100%
ANAO 72.222

NOD 18

RT 4105

CRUDy Interface

ForeignExchangeRates

COH 0.155 0.0|0.25|0.667

1.81s

ANAO 66.667 0|0.96|100
NOD 9 1|11.5|70
RT 3113 172|1985|8592
NCO 9 0|9.5|62 [1/2] [1/1]

TaarifCustoms

COH 0.103

same as above

50% 100%
ANAO 72.222

NOD 18

RT 4105

NCO 18

Data Web Service none detected n/a n/a 0.91s – –
Duplicated none detected n/a n/a 1343.97s – –
Web Service

XigniteTranscripts
NOD 4 1|12|70

Fine Grained COH 0.125 0.0|0.25|0.667 [2/2] [2/2]
Web Service

BGCantorUSTreasuries
NOD 3 same as above 0.85s 100% 100%

COH 0.083

God Object none detected n/a n/a 1.16s – –
Web Service

ServiceSoap
NOD 24 1|12|70

242.49s

ARIO 0.253 0.0|0.435|1.0
XigniteSecuritySoap

NOD 25 same as aboveLow Cohesive ARIO 0.177

Operations [7/7] [7/7]

XigniteSecurityHttpPost
NOD 25 same as above 100% 100%

ARIO 0.177

XigniteCorporate- NOD 37 same as above
ActionsSoap ARIO 0.268

May be none detected n/a n/a 0.91s – –
It’s Not RPC

wsIndicadores- NOPT 2 2|14|70

334.12s

EconomicosHttpPost ARIP 1.0 0.127|0.465|0.557
Redundant wsIndicadores- NOPT 2 same as above [3/3] [3/3]
PortTypes EconomicosSoap ARIP 1.0 100% 100%

wsIndicadores- NOPT 2 same as above
EconomicosHttpGet ARIP 1.0

Average 192.91s [22/24] [22/22]
91.67% 100%

antipattern with multiple identical port-types (i.e., NPT>1 and NOPT>1) defined
in their service interfaces, thus have ARIP=1.0, i.e., a very high value compared
to the median of 0.465. If a Web service has redundant port-types, it is a good
practice to merge them, while making sure that this merge does not introduce
a God Object Web Service antipattern. Seven other WSs were identified as Low

Cohesive Operations antipatterns (see Table 3), and two other WSs, i.e., Xig-
niteTranscripts and BGCantorUSTreasuries as Fine Grained Web Service.
Both those WSs have a very small number of operations defined (NOD is 3 and
4) and have a low cohesion (COH between 0.083 and 0.125), compared to the
maximum values (i.e., 70 for NOD, and 0.667 for COH) from other WSs. Manual
analysis also confirmed their detection, hence, we have precision and recall of
100% for Redundant PortTypes and Fine Grained Web Service antipatterns.

Again, for this experiment, we also did not identify four antipatterns on the
set of 109 Finance-related WSs. As in Section 4.6 (see Table 2), we do not consider
them to calculate the precision and recall. However, it is worth pointing out, the
manual validation for 109 WSs is indeed a labor intensive task, and for each Web
service it may take from 20 minutes to few hours based on the size of its interface.

4.8 Discussion on the Hypotheses

Following the results, we examine here three hypotheses stated in Section 4.1.

H1. Generality: In this paper, we specified ten WS-specific SOA antipatterns
from the literature as shown in Figure 5 and described in Figure 4. We specified
simpler antipatterns with fewer rules, such as Low Cohesive Operations in the
Same PortType but also more complex antipatterns with composite rules, such as
CRUDy Interface that is composed of another rule card, i.e., Chatty Web Service.
We also specified antipatterns combining six different rules, Ambiguous Name
antipattern, for instance. Hence, this confirms our first hypothesis regarding the
generality of our DSL. In fact, engineers can only use this DSL after analysing
and integrating antipatterns properties to specify them.

H2. Accuracy: As shown in Tables 2 and 3, we obtained an average recall of
100% and an average precision of 88.69%. In the first experiment, with 13 WSs,
we have a precision of 85.71%, whereas for the second experiment with 109 WSs,
we have a precision and recall of 91.67% and 100%, respectively. Besides, we have
the specificity of 98% for 13 WSs and 99% for 109 WSs. Thus, on average, we hold
a precision of 88.69%, a recall of 100%, and a specificity 98.5%, which positively
support our second hypothesis on the accuracy of our detection algorithms.

H3. Extensibility: We claim that our DSL and the SOFA framework are exten-
sible for new antipatterns. In [14], we specified and detected ten antipatterns in
SCA systems using our framework. In this paper, we specified and detected ten
more Web service-specific antipatterns, and added them in the DSL and SOFA

framework. More specifically, we added ten new metrics, such as NVMS, NOPT,
RGTS, and NCO, etc. In addition, we added some variants of already existing met-
rics in the SOFA, i.e., NOD, ANIO, ANAO, etc. Furthermore, we added new Web
service-specific SOA antipatterns, such as Low Cohesive Operations in the Same
PortType, Maybe Its Not RPC, and so forth. The designed language is flexible
enough for integrating new metrics in the DSL. Our framework also supports the
addition of new antipatterns through the implementation of new metrics and
adaptation of existing ones to the new technology. This extensibility feature of
our DSL and framework thus supports our third hypothesis.

4.9 Threats to Validity

As future work, we plan to generalise our findings to other large set of WSs. How-
ever, we tried to minimise the threat to the external validity of our results by
performing two experiments with more than 120 WSs in two different domains.
The detection results may vary based on the specification of the rule cards, and
the way the components are implemented in the SOFA framework. Internal valid-
ity refers to the effectiveness of our approach and the framework. We made sure
that the SOFA itself does not introduce antipatterns, to minimise the threat to
the internal validity. Engineers may have different views and different levels of
expertise on antipatterns, which may affect the specification of rule cards. We at-
tempted to lessen the threat to construct validity by performing the specification
of rule cards after a thorough literature review.

5 Conclusion

Web services are key artefacts for building Service-based systems. Like other
systems, SBSs evolve due to new user requirements, which may lead to the in-
troduction of antipatterns. The presence of SOA antipatterns may hinder software
maintenance and evolution. This paper presented the SODA-W approach (Service
Oriented Detection for Antipatterns in Web services) to specify and detect SOA
antipatterns in Web services. Detection of antipatterns in Web services requires
an in-depth analysis of their design, implementation, and QoS.

We applied SODA-W to specify ten common SOA antipatterns in Web services
domain. Using an extended SOFA framework (Service Oriented Framework for
Antipatterns), in an extensive validation with ten SOA antipatterns, we showed
that SODA-W can specify and detect different Web services-specific antipatterns.
We analysed more than 120 Web services and showed the accuracy of SODA-W
with an average precision of more than 75% and recall of 100%.

In future work, we plan to enhance our approach to support other SOA styles,
in particular REST services that follow different principles and standards for
service design and consumption. Furthermore, we plan to conduct additional
experiments with more Web services and antipatterns.

Acknowledgment The authors are thankful to Ons Mlouki for initiating the
study. This study is supported by NSERC and FRQNT research grants.

References

1. Chambers, J., Cleveland, W., Tukey, P., Kleiner, B.: Graphical Methods for Data
Analysis. Wadsworth International (1983)

2. Consel, C., Marlet, R.: Architecturing Software Using A Methodology for Language
Development. Lecture Notes in Computer Science 1490, 170–194 (September 1998)

3. Coscia, J.A.L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating Web Service
Interface Quality Through Conventional Object-oriented Metrics. CLEI Electronic
Journal 16 (April 2013)

4. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE AntiPatterns. John
Wiley & Sons Inc (August 2003)

5. Edwards, M.: Service Component Architecture (SCA). OASIS, USA (April 2011),
http://oasis-opencsa.org/sca

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (August 2005)

7. Evdemon, J.: Principles of Service Design: Service Patterns and Anti-Patterns
(August 2005), Online:msdn.microsoft.com/en-us/library/ms954638.aspx

8. Frakes, W.B., Baeza-Yates, R.A.: Information Retrieval: Data Structures & Algo-
rithms. Prentice-Hall (1992)

9. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool for Semi-Automatically
Annotating Semantic Web Services. In: In Proceedings of International Semantic
Web Conference (2004)

10. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design
Defects Detection and Correction by Example. In: IEEE 19th International Con-
ference on Program Comprehension (ICPC). pp. 81–90 (June 2011)

11. Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns. vol. 2, pp. 160–171.
International Academy, Research and Industry Association (IARIA) (2008)

12. Mäntylä, M.V., Lassenius, C.: Subjective Evaluation of Software Evolvability Using
Code Smells: An Empirical Study. Empirical Software Engineering 11(3), 395–431
(September 2006)

13. Modi, T.: SOA Management: SOA Antipatterns. www.ebizq.net/topics/soa man-
agement/features/7238.html (August 2006)

14. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.G., Baudry,
B., Jézéquel, J.M.: Specification and Detection of SOA Antipatterns. In: Service-
Oriented Computing. Lecture Notes in Computer Science, vol. 7636, pp. 1–16.
Springer Berlin Heidelberg (November 2012)

15. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-
ography Standards The Case of REST vs. SOAP. Decision Support Systems 40(1),
9–29 (2005)

16. Munro, M.J.: Product Metrics for Automatic Identification of “Bad Smell” Design
Problems in Java Source-Code. In: Proceedings of the 11th International Software
Metrics Symposium. IEEE Computer Society Press (September 2005)

17. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A.: Best Practices for Describing,
Consuming, and Discovering Web Services: A Comprehensive Toolset. Software:
Practice and Experience 43(6), 613–639 (2013)

18. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Automatically Detecting
Opportunities for Web Service Descriptions Improvement. vol. 341, pp. 139–150.
Springer Berlin Heidelberg (2010)

19. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: SOA Patterns. Manning Publications
Co. (2012)

20. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. Software: Practice and Experience 42(5), 559–583 (May 2012)

21. Settas, D.L., Meditskos, G., Stamelos, I.G., Bassiliades, N.: SPARSE: A Symptom-
based Antipattern Retrieval Knowledge-based System using Semantic Web Tech-
nologies. Expert Systems with Applications 38(6), 7633–7646 (June 2011)

22. Sindhgatta, R., Sengupta, B., Ponnalagu, K.: Measuring the Quality of Service
Oriented Design. vol. 5900, pp. 485–499. Springer Berlin Heidelberg (2009)

